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As an application of a general result for posItIve operators due to
Lorentz-Schumaker [7], we consider pointwise saturation for an important
class of operators arising in connection with the real inversion formula of
variation diminishing convolution transforms, a field initiated and studied
extensively by Schoenberg [8] and Hirschman and Widder [6]. The operators
are given by

r" Gn(x-t)f(t)dt,
• -_C"yc)

Gn(t) = (l/27Ti) ret) En(s)e st ds, En(s) = e'i", TI (I - s/ak)e'!"\
"' -zoo k=n-\ 1

(1)

with real bn and ak satisfying b n == o(n), n -+ 00, and L~~l aic 2 < CfJ. Some
fundamental properties (cf. [3; 4; 6, PP. 56, 125]) are,

(i) Gn(x) =;Ceo 0,

(ii) I: Gn IILl = 1,

(iii) ret) xGn(x) dx = bn ,
"'-'Y:.

with an = I a/;2 ,
k~n+l

(2)

(v) Gn(t) <; Ka-;,l!2 exp{ _!a-;,l!2 ! t - hn I},
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which, in particular, implies, for any 8 > 0,

(v') r t 2Gn(t) dt = o(an).
• [t:>8
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Here LJI = LJJ( - 00, 00), 1 c::;; p ~;; 00, are the usual Lebesgue spaces
whereas C( - 00, 00) is the set of all functions, continuous and bounded on
(-00,00).

The norm-saturation theorem for (I) was given by Ditzian [3] (see also
[4, 5]). For pointwise saturation one may essentially use the same techniques.

PROPOSITION. Let {Xn} CUbe such that for some null-sequence {f-Ln},
f-Ln + 0, and for constants Y1 , Y2 E R,

(i) roo Xn(u) du = 1
~ -(I:)

(ii) foo UXn(u) du ~.c Y1 . f-Ln + o(f-Ln),
-00

(iii) roo u2
I Xn(u)1 du = O(f-Ln),

'-cfJ

(iv) roo U2Xn(U) du = Y2f-Ln + O(f1,,,),
._::1)

for each 8 O.

(3)

IffE Loo, the following Voronowskaya-type relation holds:

~..~~ ~n L: [j(x - u) - j(x)]Xn(u) du = -Ytf'(x) + (Y2/2)j"(X),

whenever j"(x) exists,

Following classical lines (cf. [4; 2, p, 138]) the proof is straightforward.
Indeed,

roo [f(x - U) - j(X)]xnCU) du = roo [f(x - u) - j(x) .L uj'Cr)]x,,(u) du
._~ ._~

- foo j'(x) UXn(U) du == 11 -+ 12
-CI

so that 12 = -ytf'(x) f-Ln + o(f-Ln) by (3)(ii). Since j"(x) exists,

f(x - u) - j(x) + uf'(x) =,~ Wf"(x) . u2 -+ YJ(u) . u2,
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with some 1) C L' satisfying limu~o 1)(U) .c 0. Therefore, by (3)(iii), (v)
S~x I Lh)(u) Xn(u) du o(/1-n), and it follows by (3)(iv) that

O(/1-n),

which proves the assertion.
Obviously, if bn ~, (rxj2) an ! o(a,,) for some lX E R, the sequence {G,,j

(cf. (1» satisfies (3) with /1-n an, Yl =c ('ij2, Y2~· I.
Now one may apply a general pointwise saturation theorem for positive

linear operators satisfying Voronowskaya-type conditions (see [I, 7J and the
literature cited therein). Thus, with p(x) L ~(x) S: e't dt, D
-rx(djdx) (djdx)2 in the terminology of [I], Theorem 2,

COROLLARY. Let fE C(-oc, Cf~) and let Kn be given by (1) such that
bn = (('i12) anl- o(an) for some IX E R.

(a) If lim infn~w a~I[KnU; x) - 1(x)]
all x, Xo , XI E [a, b], X o X Xl '

ofor each x fcc (a, b), then for

lex) i'" eot dt).
.' a

(b) If a~l I J("U; x) -- 1(x)1 MI2 : 0) I) for each x E (a, b), then
rex) exists for all x E [a, h], helongs 10 era, h], and

for all x, y E [a, b], and vice versa.

Obviously, in the particular case rx 0, the assertion of (a) states thatf is
linear on [a, b], whereas (b) delivers r E LipA! I.
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